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Multiple regimes of diffusion
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We consider the diffusion of independent particles experiencing random accelerations by a space- and
time-dependent force as well as viscous damping. This model can exhibit several asymptotic behaviors,
depending upon the limiting cases which are considered, some of which have been discussed in earlier work.
Here, we explore the full space of dimensionless parameters and present an “asymptotic phase diagram” which

delineates the limiting regimes.
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I. INTRODUCTION

The position x of a particle subjected to a force which
fluctuates randomly in time 7 might be expected to undergo
diffusion in the sense that
()
m—— =

li D,
o 2t

(1)

for some diffusion coefficient D,, provided that there is some
damping mechanism preventing the particle from being ac-
celerated to arbitrarily high velocities [in Eq. (1), angular
brackets denote averages over realizations of the random
force].

In this paper, we determine the diffusion constant for the
simplest model for this process in one spatial dimension, in
which the equation of motion of the particle is

p=-w+[f(x1). (2)

Here x and p are particle position and momentum, respec-
tively, m is the mass, and 7 is the rate at which the particle
momentum is damped due to viscous drag. Time derivatives
are denoted by dots. Further, the random forcing f(x,7) is
modeled by a Gaussian random function with zero mean and
with correlation function C(x,), characterized by a correla-
tion length &, correlation time 7, and of typical size o

e =0, (flenf(x",t')=Clx-x"st=1")  (3)

The dynamics of the model defined by Egs. (2) and (3) is
determined by five dimensional parameters: o, 7, & the mass
m, and y. Out of these, one can form two independent di-
mensionless parameters: a dimensionless force xy=o7/(mé)
and a dimensionless damping w=y7. In the following, we
explore the full space of dimensionless parameters x and .

There is no exact expression for the diffusion constant for
this simple model. However, asymptotic expressions with
different regions of validity are known, depending on which
ratios of dimensionless parameters, w and Y, approach zero.
We show that there are surprisingly many different
asymptotic regimes, which are summarized in an
“asymptotic phase diagram” (Fig. 1). The axes in this dia-
gram are logarithms of two independent dimensionless pa-
rameters of the model, and a ray from the origin with slope

mx=p,
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represents a limiting process where y approaches 0 or © with
o~ x". The phase lines do not indicate sharp transitions, but
rather the boundaries between the domains of validity of six
different asymptotic regimes as the limit is taken. Some of
the regimes are well understood, but others are either new or
have only been studied recently by the authors of this paper.
It is remarkable that the phase diagram of such a fundamen-
tal model for diffusion processes has not been completely
characterized before now. In all cases, the long-time dynam-
ics is diffusive, but in some of the regimes, the stationary
distribution of momentum may be strongly non-Gaussian
and the short-time behavior may exhibit anomalous diffusion
that is (x*(r))et” with v+ 1. The diffusion constant D, de-
pends in different ways on the microscopic parameters in
different regimes, as illustrated in Fig. 2.

The three-dimensional version of the model defined by
Egs. (2) and (3) arises naturally in the study of small par-
ticles suspended in a randomly moving fluid, for which mo-
tion relative to the fluid is determined by viscous drag. In
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FIG. 1. (Color online) Asymptotic phase diagram (schematic)
for the model defined by Egs. (2)-(4) summarizing the different
dynamical behaviors of Eq. (2) described in Secs. III-V: I Ornstein-
Uhlenbeck, II generalized Ornstein-Uhlenbeck, IIIb overdamped
minimum tracking, and IIla underdamped minimum tracking. The
Ornstein-Uhlenbeck regime is divided into three regions: over-
damped advection (Ia), underdamped advection (Ib), and under-
damped inertial dynamics (Ic).
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FIG. 2. (Color online) Illustration of multiple regimes of diffu-
sion. Evaluation of the diffusion constant D, for constant x as a
function of w: for =50 (circles) and xy=1250 (squares). Also
shown is the expected behavior in regime I [Eq. (15)] (blue solid
lines) and the expected behavior in regime II [Eq. (31)] (red solid
lines). Finally, the estimate Eq. (42) for D, in the minimum-
tracking regime is shown (green horizontal line).

that context, the random force is replaced by a random vector
field, which would usually be chosen to be solenoidal, to
represent an incompressible flow. This three-dimensional
system has been extensively studied in certain limits. A sig-
nificant early contribution is due to Maxey [1], who analyzed
the clustering of particles suspended in a turbulent fluid (re-
ferred to as preferential concentration). Reference [2] pro-
vides an overview of the literature on this problem and de-
scribes recent progress.

This present paper explores the full range of regimes
which are possible in limiting cases of the model, some of
which are not realized in fluid-dynamical applications. We
remark that different choices of dimensionless parameters
are used in some other papers: much of the fluid-dynamics
literature use the Stokes number St=1/w as a measure of the
damping and the Kubo number Ku=y/w as a measure of the
time scale of fluctuations of the velocity field.

The model also exhibits an interesting effect which in-
volves a phase transition in the conventional sense. Depend-
ing on the dimensionless parameters of the model, particles
with different initial conditions experiencing the same real-
ization of the random force approach the same trajectory
with probability unity. This “path-coalescence” effect and the
“path-coalescence transition” where it disappears were noted
by Deutsch [3], who appears to have been the first to con-
sider this model systematically. In this paper, we also de-
scribe the full phase line for the path-coalescence transition,
extending results of [4]. The critical line for the path-
coalescence transition in the y-w plane is shown in Fig. 3.

The numerical simulations of Egs. (2) and (3) described in
this paper were performed with the following choice of cor-
relation function:

C(x,1) = 0? exp[— x%/(2&) - 212 7)], (4)

describing a random force with locally smooth spatial and
time correlations. Apart from this requirement, the precise
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FIG. 3. (Color online) Phase line of the path-coalescence tran-
sition. Results of computer simulations of Egs. (2)—(4) for the phase
line of the path-coalescence transition. Also shown is the theoretical
result valid for small values of y (red solid line).

functional form of the correlation function is not significant.
Note however that in regime II, one aspect of the random
forcing can make a qualitative difference (see Sec. VI). For
any choice of the random force, there is a corresponding
potential, satisfying —dV(x,r)/dx=f(x,7). For a generic
choice of correlation function, the one-dimensional potential
V(x,1) corresponding to the force f(x,t) performs a random
walk exhibiting increasing fluctuations as |x| increases. We
also consider cases where the particle dynamics is different if
the potential V(x,?) is a stationary random process.

The different regimes are illustrated in Fig. 4 by numeri-
cal simulations of Egs. (2)—(4). This figure shows the trajec-
tories x(z) of several particles for a given realization f(x,) of
the forcing.

II. SUMMARY AND PHYSICAL DESCRIPTION
OF THE REGIMES

Before describing our results in detail, we discuss the
physics of the parameter regimes of our model. We also men-
tion connections with other work on the dynamics of ran-
domly forced particles, where some of the regimes of our
model have been studied.

In the limit of large damping, the particles are advected by
a random velocity field: there is extensive literature on this
problem and the closely related model of passive scalars [5].
The advective case corresponds to regime la in our model.

Our model [Egs. (2) and (3)] reduces to the well-known
Ornstein-Uhlenbeck process [6] when the position depen-
dence of the force can be neglected. This is the case when
the forcing is sufficiently weak so that the particle position
changes negligibly within correlation time 7, which is the
case of weak forcing and weak damping. This condition will
be made more precise below. The Ornstein-Uhlenbeck pro-
cess is discussed in standard textbooks (see, for example,
[7]). The regimes Ib and Ic can both be analyzed by treating
the evolution of the momentum as an Ornstein-Uhlenbeck
process. The difference between these two regimes is that
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FIG. 4. (Color online) Trajectories x() as a function of /7 for
20 particles with initial condition p(0)=0 and x(0) randomly chosen
in [0,1]. The first two pictures (in regimes la and Ic) are similar to
those obtained by Deutsch [3] and to Fig. 1 in Ref. [4]. The trajec-
tories in region Ib are similar to those in Ia (not shown). The dif-
ference between regimes Illa and IIIb is that there are oscillations in
regime Illa due to smaller damping.

regime Ib exhibits path coalescence whereas regime Ic does
not. Despite the fact that regime Ia describes an overdamped
process, the formula for the diffusion constant is the same as
for the Ornstein-Uhlenbeck process. For this reason, regimes
Ia, Ib, and Ic are treated together in Sec. III and are referred
to as the Ornstein-Uhlenbeck regimes.

Our model is also related to stochastic or “Fermi” accel-
eration of classical particles by random forces, which is used
to model the production of cosmic rays [8]. In these studies
the damping term (proportional to y) is not included in the
equation of motion and the particle is accelerated to arbi-
trarily high energies. The treatment of the random forcing
term in the case where the particle is rapidly moving, first
considered in [9], is used in our description of regime IL
Without damping, the model exhibits anomalous diffusion
[10,11]. For the case where the damping term is included, a
new dynamical regime was identified in [12,13] with a non-
Maxwellian velocity distribution (as well as anomalous dif-
fusion at short times, before the damping term starts to limit
the acceleration). This is regime II in the phase diagram Fig.
1, we call it the “generalized Ornstein-Uhlenbeck regime.” It
is discussed in Sec. IV.

PHYSICAL REVIEW E 80, 011139 (2009)

In the case where both the damping and the force are
strong, the particle follows a local minimum of the potential
V(x,t). This is regime III of the phase diagram. This
“minimum-tracking” regime has not been considered in de-
tail in earlier work. It is discussed in Sec. V below. In Sec.
VI we briefly describe how results for regime II differ for
more general types of forcing, such as the case where V(x,?)
has stationary statistics.

Figure 3 shows numerical results on the path-coalescence
transition, for the choice of correlation function Eq. (4). For
small values of y, the phase boundary is in precise agreement
with an asymptotic theory discussed in [4], which shows that
the transition line is determined by the condition wy >3
— const. in the limit as y— 0. The data for large y are con-
sistent with the hypothesis that the phase line approaches
w=const. as y— %, but we have no compelling argument to
support this.

Finally, we comment on the physically accessible range of
dimensionless parameters. This depends on the nature of the
forcing. In the case of a particle suspended in a turbulent
fluid flow with velocity field u(x,f), the random forcing is
due to viscous drag and we write f(x,7)=myu(x,?). In this
case, disturbances in the fluid velocity field u(x,t) are trans-
ported by u(x,t) itself. This implies that the Kubo number
Ku=u7/¢ cannot be large (equivalently, y cannot be large
compared to w) if the random forcing is due to a fluid flow.
In other cases, such as forcing by random electromagnetic
fields, the entire phase diagram may be accessible.

III. ORNSTEIN-UHLENBECK REGIME

We term the regimes Ia, Ib, and Ic in the phase diagram
Fig. 1 the “Ornstein-Uhlenbeck regimes.” In these regimes,
the particles move so slowly that the distance traveled during
one correlation time 7 of the random force f(x,f) is much
smaller than its correlation length & Thus changes in the
spatial argument do not contribute significantly to the deco-
rrelation of f(x,f) and one may approximate fIx(z),¢]
= f[x(0),1] for times ¢ of the order of or less than the corre-
lation time 7.

Regime I is divided into one overdamped regime, regime
Ia (w>1), and two underdamped regimes, Ib and Ic (w
<1).

In the overdamped regime Ia, the acceleration term in Eq.
(2) is negligible and consequently the particles are advected
by the random force, that is, x = f(x,7)/(mvy).

The two regimes Ib and Ic are distinguished by different
behaviors of nearby particles, as can be seen in Fig. 4. In
regime Ib, initially separate but nearby particle trajectories
approach each other (path-coalescence regime). In regime Ic,
by contrast, initially close particle trajectories do not coa-
lesce. In the remainder of this section, we first briefly de-
scribe the single-particle dynamics in this regime (diffusion)
and then summarize what is known about the path-
coalescence transition.

To describe diffusion in the overdamped regime, one in-
tegrates the advective equation of motion x=f(x,7)/(mvy).
The change in position dx during a short-time interval ot
>Tis
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1 t+6t
5x=—J dtlf[x(tl),tl]. (5)
myJ;

We note that the time dependence of f[x(),7] is smooth.
Therefore the standard rules of differential and integral cal-
culus (as opposed to the “Ito calculus” [14]) apply when
evaluating the integral in Eq. (5) and similar integrals below.

In regime I, one may approximate f[x(;),,]= flx(¢),,],
as pointed out above. In this regime, the fluctuations of f at a
given point x are indistinguishable from the fluctuations of f
along a particle trajectory. In this case, it is straightforward to
determine the fluctuations of dx: since the force is assumed
to have vanishing mean, Eq. (3), one has (8x)=0. The vari-
ance of dx is determined by making use of the fact that
(f(t)f(0)) is small unless |t| < 7. Evaluating (&x*), one finds
the standard result

o 2Dyt
<5x >_ (m’y)z > (6)
where D, is given by
1 oo
Dy= Ef dt {f(1)/(0)). (7)

The position x(z) at time t=N&t of a particle after N mi-
croscopic steps is x(1)—x(0)==Y, 8x;, where &, is the incre-
ment at the time step number i. For the diffusion constant,
one obtains in the usual fashion

G0 -2OP) < (@udy) Dy

D,.=1i = ,
= 28N (my)?

t—0 2t

(8)

1= =]

where the increments dx; and x; are statistically independent
when i#j and o6t> 7.

Consider now the underdamped regimes Ib and Ic. The
displacements Sp of momentum (for a short-time interval &)
obey

Sp=—ypot+ éw, 9)

with
1+t
5W=f dty flx(t),4]. (10)
1

In regimes Ib and Ic, the force fluctuates sufficiently rapidly
compared to the time scale on which the momentum relaxes
(w<<1) and the change Sp of momentum during one corre-
lation time of the force is small compared to the typical value
of p. Consequently, Eq. (9) is a Langevin equation [7], de-
scribing the standard Ornstein-Uhlenbeck process where ow
is Gaussian distributed with

(bwy=0, (w?)=2D,ér. (11)
From the corresponding Fokker-Planck equation for the dis-
tribution P(p,f) of momentum p at time 7 [7]
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P a(
Jt  dp

)

vyp+Dy— |P, (12)
dp

one deduces that the steady-state distribution of momentum

is Gaussian, P(p) =exp(=yp*/2Dy).

Also in this underdamped regime, the particles diffuse.
The Fokker-Planck equation (12) allows to determine the
correlation function of momentum in the steady state. The
result is [7]

Dy
<p(t1)p(t2)>sleady state = 76Xp(— 7|t2 - t1|) . (13)
This result in turn allows to calculate the diffusion constant

t 2
szlim—<x() )
t—oo 21

t—0

) 1 t t
= hmztmzjo dtlJO dt2<p(tl)p(t2)>steady state

~ (my)*

(14)

By comparing Eqs. (8) and (14) one finds that the diffusion
constant is the same in the over- and the underdamped limits,
Dy &x

R "

Figure 2 shows results of numerical simulations for the dif-
fusion constant of the model defined by Egs. (2)—(4). In the
Ornstein-Uhlenbeck regime (I) the simulations agree well
with Eq. (15).

We now briefly summarize what is known about the path-
coalescence transition which distinguishes regime Ib from Ic.
In the path-coalescing phase (regime Ib), particle trajectories
governed by the equation of motion (2) coalesce, whereas in
regime Ic, initially close particle trajectories separate almost
surely (see Fig. 4). As was argued in [4], the maximal
Lyapunov exponent A\ serves as an “order parameter” for the
phase transition. The exponent describes the rate of change
of an infinitesimal separation between two trajectories

Ox,

X0

A=lim ' 1n (16)

{—0

Here, 6x is the initial separation of two infinitesimally close
trajectories and Jx, is their separation at time .

In regime Ib, the Lyapunov exponent is negative while it
is positive in regime Ic. The condition for the phase transi-
tion is thus A=0. In regime I, the Lyapunov exponent can be
calculated exactly [4]. Expressed in terms of the dimension-
less parameters y and w, the phase transition is found to
occur at

2

wx ¥} =const as y— 0. (17)

Figure 3 shows results of numerical simulations for the locus
of the path-coalescence transition in the y—w plane for the
model given by Egs. (2)—(4). In regime I, the transition line
is given by a line of slope 2/3, as expected from Eq. (17).
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To conclude this section, we briefly discuss the
asymptotic conditions delineating regime I in Fig. 1. First, in
the overdamped limit, it was assumed that the distance cov-
ered in time 7 is smaller than & Estimating the advective
velocity by o/(my), we have the condition o7/(m7y)<&.
Consequently, the condition distinguishing regimes Ia and
IIIb amounts to w/ x approaching a constant when w— % and
x— . Second, in the underdamped limit, w<<1, the bound-
ary between regimes Ic and II is parametrized by the condi-
tion that w/x? approaches a constant when w—0 and y
—0. This condition is derived in the next section [Eq. (33)],
where regime II is discussed.

IV. GENERALIZED ORNSTEIN-UHLENBECK REGIME

We term the regime II in the phase diagram Fig. 1 the
generalized Ornstein-Uhlenbeck regime. This regime is de-
fined by strong stochastic forcing: the particles move fast and
their momenta can be much larger than py=mé/7. This
means that the particle may travel many correlation lengths &
during one correlation time 7 and the stochastic force acting
on the particle may decorrelate in a time which is small
compared to 7. Thus the “effective correlation time” of the
force &m/ \s’m can be much smaller than 7. It is also as-
sumed that the dynamics of regime II is underdamped, i.e.,
w<l.

A Fokker-Planck description is adequate in this regime.
Define the increment ow of the force for a small time interval
ot,

t+0t
5W=f dtl f[.x(tl),tl]. (18)

In regime I, the time dependence of x(z;) could be neglected,
but this approximation is no longer valid when the forcing is
strong. Instead, one integrates the equation of motion Eq. (2)
to obtain x(¢)=x(0)+ &x, where

1 St |
ox = _f dfle_yt] p(0) + f dt2eyt2f[x(t2)’t2] :
m 0 0

For times smaller than the small time interval ¢, dx is small
and one may expand the force around dx=0. To lowest order
in ot, one obtains

St
J
<5w>xf dt1<—f[x(0),t1]5x>
0 ox
1 5’ tl t, ’ "
=~ —f dtlf dt'f dr'e= ="
mJo 0 0

x<j—f[x<o>,rlm)c<t">,t"]>, (20)
X

(19)

where we have used that (f[x(0),])=0. Since it is assumed
that w=y7<<1, the exponent y(t' —¢") =0 and the major con-
tribution to the integrals from the force correlation is for |t
—1"| < 7. We obtain
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(Sw) = j—;Jm dr 1 <%(0,0)f(pt/m,t)>. 1)

The variance of the force increments (18) becomes to lowest
order in ot,

&t St
(sw?) = f dﬁj dty (f(pty/m,1))f(pty/m,1,))
0 0

~ 5tf dt C(pt/m,1), (22)

where C is the correlation function of the force (3).

Using that the change dp of momentum during a short-
time period is Sp=—7ypdt+ow together with the first two
moments of éw [Egs. (21) and (22)], a Fokker-Planck equa-
tion is obtained using the standard procedure [7]

JP 4

= 5(—1»(1)) + iD<p>> (23)

Here, the drift and diffusion coefficients are

(p) d
v(p) = lim ~ 2 =~ yp + ~—D(p),
5t—0 ot ap
(> 1"
D(p) = lim =—| dt C(pt/m,1), (24)
ot—0 25 2 _»

where it was used that (éw)=6td,D(p). The above expres-
sion for the momentum diffusion coefficient D(p) was earlier
obtained in [9] and has also been used in [10] and [11]. Note
that when |p|<p,, D(p)=D,, which corresponds to the
Fokker-Planck equation of the standard Ornstein-Uhlenbeck
process discussed in Sec. IIL.

On the other hand, when |p|> p,, we approximate

p(p) =220 o). D, = dX C(X,0). (25)
| | pO —
For the correlation function Eq. (4), we obtain D(p)
=Dy/(1+p*/p3)"?, that is D, =D,

If the force is the gradient of a potential V(x,#) with con-
tinuous derivatives, D, vanishes and D(p)x|p|~ provided
V(x,1) is sufficiently differentiable. Further, if the correlation
function exhibits a cusp at r=0 (an example is discussed in
[13]), we find D(p) = |p|~2. In general, we write

Dlp)=D <| |> (26)

with {=0. In this paper, we mainly discuss the case (=1
which is a generic case for a random force [realized by the
correlation function given in Eq. (4)]. But in Sec. VI, we
briefly mention what is known for other force models giving
rise to {# 1.

The steady-state solution P(p) of Eq. (23) is given by
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FIG. 5. (Color online) Non-Gaussian distribution of momentum
in regime II (cf. Fig. 1). Shown are results of numerical simulations
of Eq. (2) for y=50 and w=0.01 (circles) compared to Eq. (28) (red
line).

_ Y
P(p)—Cexp< yfo dp D(p’)>' (27)

where C is chosen to normalize the distribution. When
D(p)=D,, the function P(p) is approximately Gaussian,
which corresponds to the standard Ornstein-Uhlenbeck re-
gime (regimes Ib and Ic). When D(p)=D,p,/|p|, however,
the distribution P(p) is non-Gaussian (regime II) [12]

¥lpl? )

3poD,

P(p) ~ CXP(— (28)

This result is compared to results of numerical simulations of
Egs. (2)-(4) in Fig. 5.

The generalized Ornstein-Uhlenbeck regime was studied
in Ref. [12] (see also Ref. [13]). The Fokker-Planck equation
(23) was solved as an eigenvalue problem and the propagator
to reach momentum p at time ¢ given the initial momentum
was found. From this propagator, the momentum correlation
function at equilibrium was calculated

<P(l" )p(t”»steady state
2/3
__Ten) (m) F(l 12)
3G\ y
(29)

where F,; is a hypergeometric function [15].

From the momentum correlation function, Eq. (29), it is
possible to calculate the diffusion constant in regime II. The
result is [12]

> _(P0D1)2/3 ,n_3—5/6
T omPyR 2T(2/3)?

32 3’33333’3a B

where Fj, is a hypergeometric function. Since D, ~ o°7, the
diffusion constant D, scales as
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FIG. 6. Shows (x?), as a function of f; (a) =50 and w=0.025,
0.075, 0.25, 0.5, 1, 2.5, 50, 200, 500, and 800, from top to bottom:;
(b) x=1250 and w=0.125, 1, 0.5, 2.5, 5, 50, 100, 250, 1250, 2500,
and 5000, from top to bottom. Solid lines are fits (as judged by the
eyes) to the diffusion law (1). The corresponding values of D, are
shown in Fig. 2.

§2
Dx — :XMCU_SB- (31)

This result should be contrasted with Eq. (15). Figure 2
shows results of numerical simulations of the diffusion con-
stant for our model [Egs. (2)—(4)] in this regime, in good
agreement with Eq. (30). The diffusion constant D, was nu-
merically determined by estimating (x*(¢))/(2¢), according to
Eq. (1). Corresponding data are shown in Fig. 6. The dynam-
ics in the generalized Ornstein-Uhlenbeck regime exhibits
anomalous diffusion at short times [12,13]. Results of nu-
merical experiments exhibiting anomalous diffusion are
given in [12].

To conclude this section, we discuss the conditions under
which the results described above are applicable. First, we
discuss the asymptotic conditions in Fig. 1 defining the limits
of regime II. The discussion above assumes that the dynam-
ics in regime II are described by a Fokker-Planck equation
(23) and we must also consider the conditions under which
this equation is applicable.

Regime II is defined by the condition that the motion is
underdamped, w<<1, and by the condition that the correla-
tion time along the particle trajectory is smaller than the
correlation time for a static particle. The latter condition de-
fines the transition between regimes I and II in the phase
diagram Fig. 1. This transition occurs when 'yp%/ D, is
of order unity. This fact is most easily seen by determining
the steady-state distribution P(p) of momentum for the

particular form, Eq. (4), of the correlation function P(p)

=C exp(—;—gz[(l +p2/pg)3/2—1]). In terms of the dimension-

less parameters w and y, the above condition becomes
2 22
wy ym§ o
— ~ —5— = —5 =const. 32
D, P (32)
Thus the lines distinguishing the boundaries of regime II in
the phase diagram in Fig. 1 are
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w=const as y—0,

w/x*=const as w,x — 0 (33)

Consider finally the conditions of validity of the Fokker-
Planck equation (23) in regime II. For a Fokker-Planck de-
scription of a stochastic process to be valid, two necessary
conditions must hold

(i) Amplitude condition. The random jumps of the sto-
chastic variable must be much smaller than its typical size.
Therefore, we must require that the change of momentum Ap
during a correlation time of the forcing is much smaller than
\J’m. This condition can be written in the form

Ap omé  omé w \?3
i v BT

Here, we used the fact that the correlation time of the force is
of the order of mé&/\(p®) and that in the steady state \{p*)
~(poD1/ ¥~ po(x*/ @)'"3. The amplitude condition is thus
fulfilled provided w?/x<1.

(ii) Frequency condition. The stochastic forcing must
fluctuate more rapidly than the stochastic variable. The cor-
relation time of the force is of the order of mé&/\{(p*) and the
relaxation time of p is of the order of y~'. We must therefore
require that

1/3
\% ~ w(§> <1 (35)

The frequency condition thus amounts to the same condition
as above.

In our model, the amplitude and frequency conditions
may not be sufficient to ensure that Eq. (23) is valid. The
reason is that the fluctuations experienced by the particle
may be influenced by the random force altering the trajectory
of the particle, so that the trajectory does not explore the
random force field ergodically. In addition to the two condi-
tions above, the following self-consistency condition must
also be satisfied:

(iii) Self-consistency condition. Tt is required that in the
steady state, the particle moves sufficiently rapidly so that it
is not captured by “valleys” in the potential corresponding to

flx,1),
(PpHI(2m) > éo. (36)

This condition too corresponds to w?/x<<1.

Within the boundaries of region II, we have w<<1 and
o/ x><1. In this limit, the condition w?/ y<<1 is always sat-
isfied, so that the Fokker-Planck equation is in fact always
applicable in regime II for the type of random force model
with {=1. In Sec. VI, we shall see that this may not be true
for other values of £.

V. MINIMUM-TRACKING REGIME

We term the regimes III in the phase diagram Fig. 1 the
“minimum-tracking regimes.” These regimes are defined by
large damping w> 1 and strong stochastic forcing y/w> 1.
When the force becomes large enough, the particle may be-
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Vi(z,t)
Viz,t), =0, 2¥=0
Vi, ts)

t

FIG. 7. (Color online) Disappearance of a minimum in V(x,?)
(thin black lines) and corresponding coalescence of particle trajec-
tories (thick red lines) schematic.
come stuck in minima of the Vix,1)
=—[3dx' f(x',t) of the force.

The minimum-tracking regimes are divided into two dis-
tinct dynamical regimes: under- and overdamped minimum
trackings. In the underdamped regime Illa, the particle can
oscillate around the potential minimum, whereas in the over-
damped regime IIIb, such oscillations are quickly damped
out (Fig. 2).

In regime IIIb, the diffusion constant is estimated as fol-
lows. Typically the particles are stuck in minima. As these
minima randomly disappear and appear, the particle trajecto-
ries jump and may coalesce (Fig. 7). We argue that the dif-
fusion constant is given in terms of the typical size of the
valleys (€) and the rate at which they disappear. This rate can
be estimated using a generalization of the method discussed
in [16,17] for counting the zeroes of a random function F(y).
According to [16], the density @ of zeroes of the random
function F(y) is given by

potential

0 =(8(F)|det G

), (37)

with GaB: &Fa/ 07)’,8
Valleys disappear at inflection points of V(x,r) and we
thus need to count the joint zeroes of f and d,f=f",

e =(8(Na(f")|det G[), (38)
with
9
G= ! o 39
|| (39)
s Jt

We need to calculate the average with respect to the set of
Gaussian random variables a,={f,f".f".d,f,d,f }. The expec-
tations of all five random variables vanish and their covari-
ances X;; can be expressed in terms of derivatives of the
correlation function C(x,f). For the special case (4), we ob-
tain the covariance matrix
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o 0 -o¥&
0 o€ 0
S=|-d%7& o0 3¢
ks
aI(E&7)
(40)
Performing the Gaussian average in Eq. (38), we obtain

\E 1

Q= ?E' . (41)

Note that this result is independent of o. For our choice of
correlation function, Eq. (4), the density of minima of V(x,?)
for any given time is (27&)~!. Their typical separation is thus
2mé. Assuming that particles jump by 27§ when their
minima disappear, we arrive at the following estimate for the
diffusion constant:
1 ’E 2 — 2

D, = 5(277)3\;% = \"877%. (42)
This expression does not depend on the dimensionless pa-
rameters o and y. This is expected since the diffusion is
determined by the fluctuations of the potential V(x,7). Equa-
tion (42) is in reasonable agreement with the results of nu-
merical simulations shown in Fig. 2.

Now consider the conditions delineating regime IIIb. The
crossover to regime la occurs when w/ y is of order unity as
w,x— >, as discussed in Sec. III. The transition to regime
Ila, the underdamped minimum-tracking regime, occurs
when

YWOyalley ™ L. (43)

Here, wyey= Va/(&ém) is the typical frequency of oscillation
in the minimum. Equation (43) corresponds to the following
asymptotic condition:

w*/x=const as w,y — ®. (44)

Both minimum-tracking regimes are on the path-
coalescence side of the phase diagram Fig. 3, corresponding
to negative Lyapunov exponent. Calculating this exponent is
complicated by the fact that the minimum-tracking regimes
are nonergodic. However, in regime IIla, the Lyapunov ex-
ponent can be estimated as follows.

Making use of the fact that the particles are constrained to
follow potential minima of the random force f(x,z), we ex-
pand the potential around a specific minimum at x,, at a given
time 7o, V(x,79) = V(xq,10) +5 V" (xg, 1) (x—x)>. This gives f
=-0,V=-C(x—x,), where C=V"(x,,1,)>0. In the vicinity
of xg, the equation of motion (2) becomes

p=-yp—Clx—xp). (45)

Linearizing for small separations dx and Jp gives

mx=p,
dx=8pim, &p=—yép - Céx. (46)

The dynamics of the separations is determined by the eigen-
values of the matrix
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A_(o 1/m> .
¢ -,/ (47)

The eigenvalues of A are

4C
Ne=— 2 X 1o (48)
272 my

In regime Illa, the discriminant in Eq. (48) is always nega-
tive [this follows from Eq. (44) and the fact that C~a/¢
which gives C/my?~ x/ w*> 1]. In this regime, the real part
of the eigenvalue, which describes the stability of the mini-
mum, therefore always takes the value —7y/2. Because the
real part of the eigenvalue is constant, we can conclude that
the Lyapunov exponent in regime IIla is A=—y/2.

Finally, as o is reduced further, eventually region II is
entered when the Lyapunov exponent turns positive. The cor-
responding asymptotic condition in Fig. 3 appears to be con-
sistent with the path-coalescence transition occurring at @
=const as y — . However, we have not been able to find an
argument supporting this observation. Moreover, we have
performed numerical simulations of the path-coalescence
transition at large values of y for random forces with corre-
lations different from Eq. (4) and have found that the locus
of the path-coalescence transition sensitively depends on the
nature of the fluctuations of the force. This observation is in
stark contrast to the properties of the path-coalescence tran-
sition at small values of y where the locus of the phase
transition is a universal function of the dimensionless param-
eters (apart from a nonuniversal prefactor). This universality
is also illustrated by recent analytical results of [18] (corre-
sponding to regimes Ib and Ic) for a model where the force
gradient is taken to be a piecewise constant function (a so-
called “telegraph process”).

VI. SPECIAL CASE: GENERALIZED ORNSTEIN-
UHLENBECK REGIME

Up to now, we have considered the simplest case, where
f(x,1) is a Gaussian random function with a generic correla-
tion function. For such a generic random force, its potential
function V(x,t), defined by f=-dV/dx, executes a random
walk, exhibiting increasing excursions as |x| — . This ge-
neric case corresponds to the case where {=1 in Eq. (26).
For general values of {, the long-time diffusion coefficient
and the law of anomalous short-time diffusion in regime II
were calculated in [13], where it was shown that a force
derived from a statistically stationary potential corresponds
to {=3.

In this section, we briefly discuss the conditions of valid-
ity for the Fokker-Planck equation (23) for general values of
{. The discussion follows that at the end of Sec. IV.

The three conditions to be satisfied are:

(i) Amplitude condition. From Eq. (27), we find that the
steady-state  variance ~ of  momentum is  (p?)
~(poD,/ v)™2?¢*V). The amplitude condition is therefore

Ap omé  omé <w>2/(2§+1)
Sp_gme oms (2 <l (49)
p pp P
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(ii) Frequency condition. In the steady state, we require

- o \1VesD
yém/N(p?) ~ w(—z) < 1. (50)
X
(iii) Self-consistency condition. For general values of £,
the self-consistency condition (36) yields

dméa ( w)zx(zm)

o X

This is the same condition as Eq. (49).

For (=1, these three conditions are equivalent and corre-
spond to the condition w?/xy<1 derived in Sec. IV. But for
other values of ¢, the conditions are no longer equivalent.
Condition (51) can be written as

<1. (51)

w< 2L (52)

This result corresponds to a line with slope —({— %)‘1 in Fig.
1. For {<3/2, this condition is satisfied everywhere in re-
gion II and therefore does not pose an additional constraint
on the validity of the Fokker-Planck equation (23).

For {>3/2, by contrast, Eq. (52) is not satisfied every-
where in regime II. A new nonergodic region thus appears in
the phase diagram above the dividing line determined by the
condition wy >***=const as y— . In this new regime, the
theory put forward in [12,13] is inappropriate because the
conditions for applying the Fokker-Planck approximation are
not met. We have not been able to derive a theory describing
the diffusion in this regime.

VII. CONCLUSIONS

In this paper, we studied the dynamics of particles sub-
jected to random forcing and a damping mechanism which
prevents the particles from being accelerated to arbitrarily
high velocities. We considered the simplest model for such a
process, Egs. (1) and (2), which is a natural extension of the
standard Ornstein-Uhlenbeck process.

It is expected that the particles undergo diffusion and our
results support this expectation. More surprisingly, we show
that the model exhibits a large number of diffusive regimes
differing in the way in which the diffusion is microscopically
realized. These regimes are summarized in Fig. 1 which is
the main result of our paper. This asymptotic phase diagram
is parametrized by dimensionless measures of the forcing, y,
and of the damping, .

The lines in Fig. 1 represent boundaries between the dif-
ferent dynamical regimes in the limits of large or small val-
ues of the dimensionless parameters. In the regimes Ia, Ib,
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and Ic, the diffusion constant is given by the standard
Ornstein-Uhlenbeck result [Eq. (15)].

In regime II, the diffusion constant scales with w and y in
a manner different from the Ornstein-Uhlenbeck form, as
first pointed out in [12,13]. For a generic random potential,
the diffusion constant is given by Eq. (31). We remark that at
short times, the particle positions and momenta exhibit
anomalous diffusion [10-13]. It must be noted that there are
particular choices of correlation function [Eq. (2)] for which
region II is divided into two parts: one where the theory put
forward in [12,13] applies and one where it fails, as shown in
Sec. VI of this paper.

In regime III, finally, particles track the dynamics of the
minima of the potential. This regime had not been analyzed
before, we find that the diffusion constant is independent of
w and £ [Eq. (42)]. The asymptotic scaling laws Egs. (15),
(31), and (42) agree reasonably well with results of numeri-
cal simulations (Fig. 2).

The model studied in this paper is known to exhibit a
path-coalescence transition [4]. In the limit of @ —0 and y
— 0, the locus of the phase transition is exactly known [4]. In
this paper, we have numerically determined the phase-
transition line in the w— y plane (Fig. 3). For small values of
X, the locus of the phase transition scales with the dimen-
sionless parameters in a universal fashion [Eq. (17)] indepen-
dently of the choice of correlation function [Eq. (2)]. At large
values of y, by contrast, our results show that the phase-
transition line depends upon the correlation function and we
have not been able to produce a theory predicting the locus
of the phase transition. It is remarkable that the phase dia-
gram of the fundamental one-dimensional model for diffu-
sion processes studied here has not been completely charac-
terized before now.

The results summarized above raise the question: what is
known in higher dimensions? A theory for the path-
coalescence transition in two and three dimensions in the
limit of small values of y was put forward in [19,20]. Less is
known about the diffusion in two or three spatial dimensions
in the generalized Ornstein-Uhlenbeck and the minimum-
tracking regimes. In the generalized Ornstein-Uhlenbeck re-
gime, it is possible to compute the steady-state momentum
distribution in two and three spatial dimensions and to ex-
actly characterize the short-time anomalous diffusion. These
topics will be addressed in a forthcoming paper.
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